
Understanding DMA Malware

Patrick Stewin¶ and Iurii Bystrov§

Security in Telecommunications — Technische Universität Berlin
Ernst-Reuter-Platz 7, 10587 Berlin, Germany

¶{patrickx}@sec.t-labs.tu-berlin.de
§{l.inc}@mailbox.tu-berlin.de

http://www.sec.t-labs.tu-berlin.de/

Abstract. Attackers constantly explore ways to camouflage illicit activ-
ities against computer platforms. Stealthy attacks are required in indus-
trial espionage and also by criminals stealing banking credentials. Mod-
ern computers contain dedicated hardware such as network and graph-
ics cards. Such devices implement independent execution environments
but have direct memory access (DMA) to the host runtime memory. In
this work we introduce DMA malware, i. e., malware executed on dedi-
cated hardware to launch stealthy attacks against the host using DMA.
DMA malware goes beyond the capability to control DMA hardware.
We implemented DAGGER, a keylogger that attacks Linux and Win-
dows platforms. Our evaluation confirms that DMA malware can effi-
ciently attack kernel structures even if memory address randomization
is in place. DMA malware is stealthy to a point where the host cannot
detect its presense. We evaluate and discuss possible countermeasures
and the (in)effectiveness of hardware extensions such as input/output
memory management units.

Keywords: Dedicated Hardware, Direct Memory Access, I/OMMU, Key-
logger, Malware, Manageability Engine, Rootkit, Stealth, vPro, x86

1 Introduction

Recently the arms race between malware developers and the anti-malware com-
munity reached a new level. Countermeasures for kernel level [16], hypervisor
based [20], and system management mode based malware [12] were proposed [13,
26, 5]. As a result researchers explored new environments for stealthy malicious
software.

Malware can be placed on dedicated hardware such as video cards and net-
work interface cards to attack the host platform [30, 31, 11]. Such devices bring,
among other things, their own processor and runtime memory. These devices can
operate independently from the host system. Anti-virus software cannot detect
malicious code stored in separate memory and executed on a different processor.

An attacker can use such devices, or more precisely a mechanism called Di-
rect Memory Access (DMA), to easily circumvent protection mechanisms built
into the Operating System (OS) by attacking host runtime memory directly. We
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call code performing targeted DMA based stealthy attacks to find and read or
modify target data DMA malware. Such data can be cryptographic keys for en-
crypted harddisks, credentials for online banking accounts, instant messenger
chat sessions, and open documents located in the file cache.

In this paper we classify DMA attacks and derive the term DMA malware.
We explore the term in more detail by examining if DMA malware can signifi-
cantly increase the probability of performing a successful stealthy attack against
a computer platform while preserving efficiency and effectiveness. For the evalu-
ation we built our DMA malware DAGGER – a DmA based keystroke loGGER
that exfiltrates captured data to an external entity. We are interested in the ef-
ficiency, effectiveness and especially in stealth properties of DMA malware. We
chose to implement a keystroke logger to demonstrate that “short living” data
can be captured by DMA malware.

Our implementation is based on Intel’s Manageability Engine (ME) that is
part of the popular x86 platform. Intel’s ME is implemented in business as well
as consumer platforms to support different applications, such as the Intel Ac-
tive Management Technology (iAMT) [21] or the Identity Protection Technology
(IPT) [19] (see Intel vPro platforms [18], for example).

Our DMA malware DAGGER is not executed on the host processor. It is
executed on the processor provided by Intel’s ME. No additional hardware is
required. DAGGER implements a sophisticated isolated runtime attack on user
input. Additionally, our DMA malware could steal cryptographic keys, target
OS kernel structures in an attack, and copy files from the file cache.

Although DMA malware cannot by detected by anti-virus software, an at-
tacker still faces certain challenges. DMA malware must be effective, i. e., it
should be able to successfully attack various systems. DMA malware must also
be efficient, i. e., fast enough to find and process data, even when dealing with
virtual memory addresses and randomly placed data. Such malware goes beyond
the capability to exploit DMA hardware.

The main contributions of this work are:

– DMA Malware Definition. There are different kinds of code that utilizes
DMA. To clearly identify if code should be considered harmless, an attack,
or DMA malware, we introduce an appropriate definition.

– DMA Malware Core Functionality. We present a number of require-
ments that must be fulfilled by DMA malware in order to mount successful
attacks.

– Evaluation of DMA Malware Prototype Implementations. To prove
that DMA malware increases the probability for successful stealthy attacks
while preserving efficiency and effectiveness, we implemented DAGGER.
DAGGER is executed on Intel’s isolated ME. DAGGER operates stealthily
and can attack multiple operating systems. Our implementation is so fast
and efficient that it can capture keystrokes very early in the platform boot
process, that enables DAGGER to capture harddisk encryption passwords
under Linux, for example.
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Paper Organization. Section 2 introduces necessary background. Our assump-
tions and attacker model are presented in Section 3. A classification of DMA code
and a definition for DMA malware is given in Section 4. In Section 5 we present
DMA malware core functionality. The design and implementation of our DMA
malware is presented in Section 6. Section 7 describes the evaluation of DAG-
GER, Section 8 considers countermeasures and discusses in particular I/OMMU
issues, and Section 9 presents related work. We conclude in Section 10.

2 Technical Background and Preliminaries

The target platform for our evaluation is a modern Intel x86 based system. This
section introduces the most important terms regarding the target platform.

2.1 Typical x86 System Architecture

The main components of a typical x86 system architecture as depicted in Figure 1
are a Central Processing Unit (CPU or host processor), a Memory Controller Hub
(MCH, also known as northbridge) and an Input/output Controller Hub (ICH,
also known as southbridge). The combination of CPU, MCH, ICH is called the
chipset [14]. System memory (Random Access Memory or in short RAM) as well
as a display adapter are connected to the MCH. The MCH controls access to
memory. It can block requests to memory addresses or redirect the request to
the ICH, if the destination address belongs to the ICH. Peripheral devices, such
as flash memory, Network Interface Card (NIC), etc., are integrated into the
system using the Peripheral Component Interconnect express (PCIe) standard.
This standard implements a serial interconnect for peripherals and the chipset.
NICs and other add-on cards can be connected to the ICH via PCIe. Further
controller devices connect other formats, such as Universal Serial Bus (USB),
FireWire, or Serial Advanced Technology Attachment (SATA), via PCIe to the
system. Legacy PCI devices are connected to the PCIe architecture via a so called
PCI-to-PCIe bridge [4]. In Laptop computers Personal Computer Memory Card
International Association (PCMCIA)/ExpressCard devices are integrated into
the system utilizing PCIe.

The host CPU is not necessarily the only processor in the system. The
video card, for example, supports a Graphics Processing Unit (GPU) to ef-
ficiently modify computer graphics. Data to be processed is stored in Video
RAM (VRAM), that is separated from normal system RAM. Other devices
with similar properties are NICs and Intel’s Manageability Engine in the plat-
form’s MCH. They also utilize separate processors as well as separate RAM to
execute firmware.

2.2 Direct Memory Access

PCIe supports DMA for peripherals for fast memory access without the involve-
ment of the host CPU. The aim of DMA is to remove the burden from the host
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Fig. 1. x86 Chipset and Peripheral Components

CPU. DMA allows peripherals to gain access to the whole host memory bypass-
ing the CPU. The CPU can perform other tasks while DMA transfers occur.
Peripherals can have their own engines to perform DMA. This kind of DMA is
called first-party DMA [29, p.428]. Another mechanism is third-party DMA [29,
p.428] where a central DMA Controller (DMAC) is necessary to provide legacy
devices without DMA engines with fast memory access. It is also integrated in
modern platforms [17, p.128].
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Fig. 2. (a) Third-party DMA: The host CPU (1) configures (source and destination
address) the central DMA controller to (2) perform a DMA tranfser. The DMA con-
troller (3) interrupts the host CPU when the DMA transfer has been finished [15, p.700].
Hence, the host CPU is aware of a third-party DMA transfer. — (b) First-party DMA:
The peripheral device can (1) configure its own DMA engine. The device acts as bus
master to get control of the system bus to perform a DMA transfer. The device can
interrupt the host CPU when the device (2) has completed the transfer. The trans-
fer also works if the device does not interrupt the host CPU at the end of the DMA
transfer. In this case the CPU is completely unaware of the DMA transfer.

Figure 2 highlights an important difference regarding stealthy operation be-
tween third- and first-party DMA. When using third-party DMA the host CPU
is aware of the DMA transfer, when using first-party DMA the host CPU is not
necessarily aware of the transfer.

Note, a DMAC or a DMA engine can only access host memory addresses,
but not host CPU cache, host CPU registers, or the harddisk, for example. The
latter implies that data swapped out from runtime memory to the harddisk is
not accessible by a DMA engine, either.
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2.3 Input/Output Memory Management Units

Intel introduced a technology called Intel Virtualization Technology for Directed
I/O (VT-d) [1] as one of several building blocks to provide hardware supported
virtualization for x86 systems. VT-d can be considered as an Input/Output Mem-
ory Management Unit (I/OMMU) to efficiently assist virtualization require-
ments, such as reliable isolation of virtual machines running on a virtual machine
monitor. VT-d is mainly used in conjunction with virtualization solutions. With
VT-d, system software, that means a hypervisor or an OS, can create memory
protection domains. For example, isolated subsets of physical memory can be
assigned to a virtual machine or to memory of an I/O device driver. An I/O
device not assigned to a protection domain has no access to physical memory
of that domain. These access restrictions are realized using address translation
tables. System software configures so called DMA Remapping (DMAR) engines
provided by Intel VT-d. Such an engine maps a memory request, for example
triggered by an I/O device, to physical memory. VT-d can block a memory
request, if the device is not assigned to the protection domain.

3 Assumptions and Attacker Model

The attacker model describes the setting of a stealthy DMA attack scenario.
The attacker is able to infiltrate dedicated hardware present in a computer plat-
form with malicious payload remotely. This can be carried out via an OS or
firmware related zero-day exploit [11], for example. The dedicated hardware sup-
ports DMA as described in Section 2. We assume that this computer platform
has usual up to date defense mechanisms such as anti-virus software and a host
firewall. The platform user does not apply additional hardware such as a hard-
ware firewall to protect the computer platform.

We assume that only a completely stealthy attack can result in a successful
attack. Hence, the attacker wants to hide the attack by using the stealth poten-
tial of dedicated hardware. Additional hardware would decrease the probability
of a successful stealthy attack significantly. Most likely, the attacker aims on
stealing data, e. g., to conduct industrial espionage or to aquire online banking
credentials, etc.

4 DMA Malware Definition

To determine a definition for the term DMA malware we first classify different
kinds of DMA based code. This helps to clearly distinguish between simple DMA
usage, DMA attacks and DMA malware, whereby the latter has a clear focus
on stealthiness. Note, DMA malware goes beyond the capability of controlling a
DMA engine.

DMA based code implementing malicious functionality is considered as seri-
ous threat. Such code can be operating stealthily during infiltration and runtime.
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It is also an advantage, e. g., for long-term attacks, if the code can survive plat-
form reboots and power off as well as standby modes. Hence, we can prioritize
the following criteria for our classification system. That is, the DMA based code:

(C1) implements malware functionality

(C2) needs no physical access to increase the probability of stealthy
infiltration

(C3) applies rootkit/stealth capabilities during runtime

(C4) can survive reboot/standby/power off modes

With this prioritization we can derive a binary based classification:

23 22 21 20

C1 C2 C3 C4

This classification system covers 16 classes of DMA based code. We can
derive a unique number for each class. For example, DMA based code that does
not perform malicious actions (C1 = 0), leaves no traces on the host (C3 = 1),
does not need physical access (C2 = 1), and cannot survive reboots (C4 = 0) is
classified with the binary pattern 0110, that is class 6 in decimal. The higher the
class, the more dangerous is the DMA based code. Note, we use this classification
system to compare related work in Section 9.

Our definition of DMA malware is as follows:

Definition: DMA malware is malicious software executed on dedicated
hardware attacking a computer system via a mechanism called direct
memory access as well as fulfilling at least the criteria C1, C2, and C3.

When applied to the target platform introduced in Section 2, this definition
means, that DMA malware is based on first-party DMA and the DMA engine
can be configured by the attack code to not involve the host CPU. The attack
code is executed on dedicated hardware with its own processor and runtime
memory, such as a NIC. Controlling the NIC increases the probability that an
attacker can hide data during exfiltration.

5 DMA Malware Core Functionality

When attacking the host, it is not enough for an attacker to control a DMA
engine. The engine enables the attacker to read and to write to host memory.
However, in most cases the target memory address is not known.

Overcoming Address Randomization. The attacker has to determine mem-
ory addresses. The problem is that the memory space allocated for, e. g., kernel
data structures is not at the same memory address after a platform reboot.
Data structures are placed randomly in memory by the OS. This can happen
in a natural way when a device driver, for example, allocates memory and gets
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the next free unallocated memory chunk. The memory address of that chunk
is not necessarily the same after a platform reboot. Alternatively, the OS can
apply certain randomization algorithms to ensure that data structures are not
placed at the same memory position. Of course, an attacker can scan the whole
system memory for signatures of the target data, but this is very inefficient when
scanning a system with 4 GB physical memory or more.

Memory Mapping. Operating systems work with virtual memory addresses [6,
Chapter 15], but DMA works with physical memory addresses. The OS creates
so called page tables that are used by the host CPU to map virtual memory
addresses to physical ones. The mapping is absolutely necessary to resolve mem-
ory address pointers when using DMA. A special host processor control register
called CR3 contains the physical memory address of the page tables. The attacker
has no access to the CR3 register. The visibility of a DMA engine is restricted to
host memory only.

Search Space Restriction. Without further investigations the attacker has to
scan the whole memory address space for valuable data. There are two potential
ways in which an attacker can overcome this problem. The first way is to analyze
if the OS places the data structures in question in approximately the same
memory area. The second possibility is to implement OS memory management
mechanisms. That is, the attacker must find a way to access memory page tables
created by the OS. With access to the page tables the attacker can then traverse
page tables and is able to resolve pointers from one data structure to another.
Note, this still requires a known starting point for the search.

6 Design and Implementation of DAGGER

We present an overview of a general design for our DmA based keystroke loGGER
DAGGER in the next subsection before we explain the details of the DAGGER
implementation in Subsection 6.2.

6.1 General Design

Our design of DAGGER is depicted in Figure 3. DAGGER is DMA malware.
That is, DAGGER has to fulfill the DMA malware definition including at least
the criteria C1, C2, and C3.

DAGGER consists of three main components. Search: find the address of
valuable data in the host memory via DMA. Process Data: read valuable data
within the regions identified during the search process. Exfiltration: exfiltrate
information in a way that is invisible to the host.
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Fig. 3. General Design: DAGGER is executed on a DMA capable device so that it can
(1) search and (2) process data from host runtime memory. It (3) controls a communi-
cation path to exfiltrate information.

6.2 Implementation based on Intel’s ME Environment

To evaluate DMA malware we chose to implement DAGGER on Intel’s ME.
Intel’s ME provides some useful features for implementing DMA malware that
we describe in the following paragraphs.
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Fig. 4. Intel’s Manageability Engine Environment

Embedded µ-Controller. The core of Intel’s ME is an embedded µ-controller
placed in the platform’s MCH. This isolated environment contains Read Only
Memory (ROM), Static Random Access Memory (SRAM), DMA hardware to
access the host memory [5, 28], and a processor as depicted in Figure 4. The
embedded processor of the ME is an ARCtangent-A4 (ARC4). The isolated
execution environment is available regardless of the power state, even in standby
or power on/off. It only requires that the chipset is connected with a power
source.

ME Firmware. Applications executed on the embedded µ-controller are im-
plemented in firmware (ME FW) and stored in flash memory together with the
BIOS. The most prominent ME firmware example is Intel’s Active Management
Technology [21]. But depending on the kind of computer platform (business or
consumer hardware) the ME can also run other firmware. Other firmware exe-
cuted by Intel’s ME are for instance: Intel’s Identity Protection Technology [19],
Alert Standard Format [28, p.46], Intel Quiet System Technology for temperature
and fan control [28, p.46], and Integrated Trusted Platform Module [21, p.109].
ME firmware can communicate with the host via a PCI device interface called
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ME Interface (MEI) [21, p.71]. The MEI can provide the version of the executed
ME firmware, for example.

Separate Memory. During the initial platform power-on procedure the ME
firmware image is loaded into ME RAM. The firmware itself runs on the µ-
controller internal ARC4 processor and it also uses some system RAM as de-
picted in Figure 4 to store runtime data. This runtime storage is provided by a
certain memory area that is invisible to the main CPU and the OS. The sepa-
ration is enforced by the chipset [21].

Out-of-Band Network Channel. The ME environment introduces Out-Of-
Band (OOB) communication, i. e., a special network traffic channel used by
iAMT. The iAMT enabled computer platform is managed by a remote manage-
ment console using OOB. OOB is also available regardless of the power state.
OOB can be considered to be a separate network connection, running on the
same hardware. The ICH implements necessary components to support the ME
environment with the OOB feature. The firmware filters network traffic intended
for, e. g., iAMT and redirects the packets to the ME. This kind of traffic is iden-
tified by TCP port numbers.

6.3 Attack Implementation Details for Linux and Windows Targets

We implemented two keystroke logger prototypes to attack two targets, Linux
and Windows based OSes. We decided to find and monitor the keyboard buffer
address of 32 bit versions of the target OSes. In comparison to 64 bit versions,
32 bit versions have to deal with a more complicated memory management. For
example, the attacker has to consider Physical Address Extensions (PAE) [25,
p.769] or certain memory offsets when mapping memory addresses. The following
subsections describe, how we implemented the DMA malware core functionality
as described in Section 5. The prototypes capture short living keystroke codes
within their monitoring phase. Each prototype handles the search phase for the
target buffer differently. This has at least two reasons. One reason is to evaluate
as many aspects as possible of DMA malware. The other reason is that OSes
have different memory management properties.

We use a vulnerability described in [28] to infiltrate the ME environment dur-
ing runtime. To call our code we hook a ME firmware function that we identified
as the library function memset. The authors of [28] assumed to hook a timer
interrupt handler. But actually they hooked the ME firmware function memcpy.
We hook memset since we determined that it is called more often.

Linux. Our Linux variant is based on a signature scan as depicted in Fig-
ure 5. We analyzed the available Linux source code to derive a signature of our
target, the physical address of the keyboard buffer. The address of the buffer
is part of the USB Request Block (URB) structure that is defined in the file
include/linux/usb.h of the Linux source code. The demanded structure field
is called transfer dma. The memory offsets differ from kernel version to ker-
nel version. We solved that problem by exploiting the Grand Unified Bootloader
(GRUB) that places a kernel identifer at a constant physical memory address.
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We implemented a function that reads the identifier via DMA and parses the
kernel version number to derive corresponding offsets. Afterwards our prototype
runs through the search phase, that is, the signature scan.

USB Request Block Structure

...

...
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...

1Start URB signature scan
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Fig. 5. USB Request Block Signature Scan (simplified): The scan (1) begins to search
for a pointer to the USB device structure. A candidate for such a pointer is aligned
to a 0x400 boundary. The structure field transfer dma must be aligned to a 0x20

boundary. If both conditions are true, the product string in the USB device structure
is (2) checked for the substrings “USB ” and “Keyboard”. In the last step the signature
scan (3) checks if the keyboard buffer contains garbage, that is, invalid keystroke codes.

Since our Linux prototype targets kernel data structures we can restrict the
search space to the first gigabyte of system RAM. Standard Linux systems have
a memory split of 1 GB/3 GB, that means, 1 GB for kernel space and 3 GB for
user space. We were able to further restrict the search space by empirically ana-
lyzing in which memory area the kernel places the data structures needed by our
signature scan. We determinded that this memory area is between 0x33000000

and 0x36000000 for the Ubuntu Linux kernel version 3.0.0 after a fresh plat-
form boot. The address of the keyboard buffer does not change after standby
or hibernate mode. With this approach we overcome the problem of inefficiently
scanning the whole system memory for the randomly placed signature. Map-
ping virtual adddresses to physical ones is a minor issue when attacking the
Linux kernel. Normally, in 32 bit versions a kernel virtual address (or more pre-
cisely kernel logical address [6, Chapter 15]) is mapped to its physical address
by substracting a constant offset. In 64 bit Linux versions such an offset is not
needed. Hence, there is no need to know the content of the CR3 processor register.

Windows. To be able to perform the search using the search path as described
below, virtual addresses must be mapped to physical ones. This mapping is
done using page tables created by the Windows kernel. The memory address
of those page tables is loaded into the CR3 register, which an attacker cannot
access via DMA. It turned out after some empirical tests with a simple driver,
that the physical address of the page tables for the system process takes one of
the following two values for Windows Vista/7 systems: 0x122000 or 0x185000.
The system process is the first process created during Windows startup. With
this knowledge DAGGER can access the page tables created by the kernel and
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overcomes the problem of mapping virtual addresses to physical ones. DAGGER
implements a page table traversing algorithm that takes account of PAE.

Our Windows sample searches for a structure called DeviceExtension that
is maintained by the USB keyboard driver kbdhid.sys. This structure contains
a buffer that stores the codes of the last pressed keys. The source code for
kbdhid.sys is not publicly available. The most convenient way to get internal
information of that driver was to use IDA Pro1, Windows Debugger (WinDbg)
tools, and debug symbols provided by Microsoft2 in form of pdb files.

To finally determine the location of the buffer in the DeviceExtension struc-
ture, our research starts quite early in the Windows boot process [25, Chap-
ter 13]. We analyzed further internal Windows structures. To find a starting point
for the search, we analyzed the Kernel Processor Control Region (KPCR [25,
p.62ff]), or more precisely KiInitialPCR, the KPCR for the processor 0. We
also examined the Object Manager Namespace Directory (OMND, part of the
Windows object manager). We figured out that KiInitialPCR is well suited to
derive a path to the DeviceExtension structure as depicted in Figure 6.

KiInitialPCR
...
KdVersionBlock
...

KdDebuggerDataBlock
...
ObpRootDirectoryObject
...

Driver Object kbdhid
...

Object Directory Driver (Hash Table)
...

...
24: kbdhid

36: i8042prt Device Object

...

...

...
DeviceExtension DeviceExtension Structure

...

...
Keystroke Code Buffer

OMND (Hash Table)
...

...
16: Driver

19: Device
...

...

...
Driver Object i8042prt ...

...

...

Fig. 6. Find DeviceExtension Structure (simplified): With KiInitialPCR as a starting
point, DAGGER finds the OMND, that provides via hash tables a path to the driver
object kbdhid. This object contains a pointer to a device object. The device object
provides the DeviceExtension structure, which contains the keystroke code buffer.

KiInitialPCR is not located at a constant memory address. DAGGER has
to apply another step before it can start with the search as depicted in Figure 6.

The memory position of KiInitialPCR is determined by a function called
OslpLoadAllModules of the winload.exe binary as depicted in Figure 7. This
binary is loaded by the Windows boot manger bootmgr that in turn is loaded
by Master Boot Record (MBR) code, etc. The function loads the Hardware Ab-
straction Layer (HAL) library hal.dll as well as the Windows kernel image
in a more or less random manner. The kernel image contains KiInitialPCR at
a constant relative address. The disassembled code of OslpLoadAllModules is
reminiscent of an Address Space Layout Randomization (ASLR) mechanism [25,
p.757].

1 See http://www.hex-rays.com/products/ida/index.shtml
2 See http://msdn.microsoft.com/en-us/windows/hardware/gg462988
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Fig. 7. Find KiInitialPCR (simplified): OslpLoadAllModules determines the exact
position of the Windows kernel image and the HAL.

The memory buffer for the kernel image and the HAL is allocated by Oslp-

LoadAllModules via a function called BlImgAllocateImageBuffer. The lat-
ter function returns stable address values for a Windows system. These values
may vary on different systems. For every possible return value of the function
BlImgAllocateImageBuffer there are 64 theoretically possible different 4 KB
aligned virtual addresses. These addresses need to be checked in order to find
the kernel image base address. The disassembly of OslpLoadAllModules revealed
that the randomization seed for the address randomization has a 5 bit value. This
implies 32 possible addresses for each (of two) possible load order cases, i. e., first
kernel image and then hal.dll or vice versa. As long as KiInitialPCR has a
constant relative virtual address within the kernel image, the same number of
virtual addresses to be checked also applies for a direct KiInitialPCR search
without any need to deal with the kernel image. To ensure that DAGGER found
the correct KiInitialPCR we implemented a KiInitialPCR signature check.
When DAGGER has found the correct KiInitialPCR, DAGGER continues to
look for the keyboard buffer using the search path described in Figure 6.

7 Evaluation

We used an x86 platform with a Q35 chipset, 2 GB RAM, a 4-core 3 GHz CPU,
and iAMT firmware (version 3.2.1) to evaluate DAGGER with four different
32 bit OS kernels: Windows Vista Business (Service Pack 2), Windows 7 Profes-
sional (Service Pack 1) and Ubuntu Linux kernel version 2.6.32 as well as kernel
version 3.0.0. The DAGGER attack binary code has a size of approximately
33 KB for Linux and 31 KB for Windows.

DMA Malware Fulfillment. We designed and implemented our DAGGER
prototypes according to the DMA malware definition described in Section 4.
(C1) is clearly fulfilled since it implements working keystroke logger functionality.
DAGGER needs no physical access for the infiltration process (C2). We infiltrate
the ME environment using a software based exploit during runtime. DAGGER
exploits dedicated hardware to implement rootkit properties (C3). We ran host
performance overhead tests (memory: MEM, network: NET, and CPU), since
host and ME environment share the NIC as well as a RAM chip. Parallel NIC
and RAM accesses must be arbitrated and could therefore cause delays. Our
measurement results depicted in Figure 8 reveal no significant overhead. The
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highest overhead that we could detect is approximately 1.5 % when accessing the
host memory during the search phase. It is extremely unlikely that this minimal
overhead would reveal DAGGER. The search times summarized in Figure 9 are
very short and the very aggressive memory stress test we performed does not
represent the memory utilization of a normal computer system.

(a)          Linux 3.0.0 Performance Overhead Test Results
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 (b)          Windows 7 Performance Overhead Test Results
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Fig. 8. Host Performance CPU, MEM, and NET Overhead Tests: We used Time Stamp
Counters [6, p.186] to measure overhead time. We measured the time it takes to copy
a 100 MB test file over the network (NET) and within RAM (MEM) as well as the
time it needs to compute a SHA1 hashsum over this test file ten times in parallel to
stress all four CPU cores (CPU). Each benchmark was performed three times: without
keystroke logger (baseline), keystroke logger in search mode, and keystroke logger in
monitoring mode. For the monitoring mode we configured the keystroke logger to
constantly send network packets of approximately 1000 packets per minute. This is
equal to 500 keystroke and 500 key release events. We repeated each test 1000 times.
A bar in the figure represents the mean of 1000 runs.

DAGGER has solely read-only operations to ensure stealthiness. The pop-
ular network sniffer Wireshark3 was not able to detect any DAGGER traffic
on Linux and Windows systems. Host firewalls cannot block such traffic either.
Even if anti-virus software knew DAGGER’s signature it would be unable to ac-
cess DAGGER’s memory to apply the signature scan successfully. Nethertheless,
we also run a software called Mamutu4, that is, amongst other things, special-
ized in detecting keylogger behavior. Even specialized software could not find
any indication of DAGGER. Regarding criterion C4 we successfully checked if
DAGGER’s attack code is fully functional after a platform reboot, after standby
and after power off state. We determined that this depends on an iAMT BIOS
option. Our code cannot survive a cold boot that happens if this option is not set.

Effectiveness and Efficiency. DAGGER is efficient, since it can permanently
catch short living data from the keyboard buffer. To prove that DAGGER is
also effective we tested DAGGER with different Windows and Linux versions as
well as several keyboards (Logitech, Dell, FujitsuSiemens). The measured search

3 See http://www.wireshark.org/
4 See http://www.emsisoft.com/en/software/mamutu/
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(a)          Linux 3.0.0 Several Keyboards
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(b)          Windows 7 Several Keyboards
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(c)          Several Operating Systems
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(d)          Windows 7 Swap on/off
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Fig. 9. Search Time Measurement Results: The test results with several keyboards
under Linux reveal a best case for search times of around 1000 ms and a worst case
of almost 30,000 ms as depicted in (a). The median for all keyboards is at 3281 ms.
Useful for comparison: scanning the whole memory area determined for Linux (see
Section 6.2) search takes approximately 13,000 ms. The worst case of 30,000 ms is due
to an erroneous DMA transfer that we do not handle directly. This causes DAGGER
to repeat the search phase. On Windows 7 the best search time is approximately 50 ms
and the worst time is around 120 ms, see (b). The median for all keyboard is at 93 ms.
Hence, the search strategy we implemented for Windows targets performs much better
than the signature scan based strategy for Linux. The plot in (c) compares different
target kernels. DAGGER performs slightly better for Windows 7 than for Windows
Vista. Linux 2.6.32 places the target memory structure closer to 0x33000000 than
Linux 3.0.0. Thus, DAGGER has more hits around 1000 ms when attacking Linux
2.6.32. The results in (d) confirm that swapping has no effect on the efficiency and
effectiveness of DAGGER. A platform reboot was only applied to change the swapping
behavior. The peaks are due to search phase repeats.

times summarized in Figure 9 prove that DAGGER is quite efficient. We re-
peated the measurements for each kernel and for each keyboard 100 times. We
took a measurement after a platform (re)boot to change the target address for
each test run. The Linux measurement results imply that we could further re-
strict the search space. We could start the search near the lowest address we
encountered most often during our tests. Search times of around 2500 ms are
due to target addresses near 0x33c00000. Thus, we could skip almost 2500 ms
if we start the search at 0x33c00000. Furthermore, we could skip the search
area address range between 0x34000000 and 0x36000000. Almost no targets
were found in this area. A lot of targets were found near 0x36e0000, i. e., search
times of around 12,500 ms that could also be saved. This increases the proba-
bility to miss keyboard buffer addresses. That is, we can get better (similar to
the Windows attack) search times at the expense of effectiveness. The best case
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search times are sufficient to capture hard disk encryption passwords, for exam-
ple. We tested this successfully with a Linux system. The Windows kernel can
swap out memory pages to the hard disk – Linux does not. Swapped memory
pages cannot be found by DMA malware. Hence, we also did a test for Windows
to check if swapping has any effect on DAGGER as depicted in Figure 9 (d).

ME Firmware Condition. To be really stealthy DAGGER ensures that the
ME firmware is still up and running correctly. iAMT provides a webserver for
remote platform management [21, p.215] that is still usable. The server responds
correctly on the local platform on Linux and Windows. Firmware tools utilzing
the MEI (see Section 6.2) also work when DAGGER is active. We successfully
tested the AMT Status Tool (part of the Local Manageability Service driver) and
the Manageability Connector Tool (part of the Manageability Developer Toolkit
7.0 ) under Windows. Under Linux we successfully tested the Intel AMT Open-
source Tools and Drivers (version 5.0.0.30), or more precisely the ME Status and
the ZTCLocalAgent tool. Note, we determined that DAGGER still runs when
we deactivated the iAMT firmware in the BIOS. It appears that the ME envi-
ronment cannot be disabled entirely via any BIOS options.

I/OMMU. To test an I/OMMU as a countermeasure against DAGGER we
enabled Intel VT-d in the BIOS. As far as we know Windows does not support
I/OMMUs directly. We could successfully attack Windows Vista and Windows 7
although the I/OMMU was activated. Linux experimentally supports I/OMMU
configuration with additonal effort. We also enabled VT-d in the BIOS and we
activated I/OMMU support via the kernel command line. With these additional
steps we were able to prevent the Linux version of DAGGER from reading short
living keystroke codes from OS memory. This protection is not activated by
default and the code is still experimental. In the next section we discuss, among
other things, further issues regarding the I/OMMU.

8 Countermeasures

To scan for DMA malware using software executed on the host CPU is quite
difficult. For example, current AV software does not scan the runtime memory
of peripherals or the host CPU cannot access the runtime memory due to cer-
tain isolation mechanisms. The worst case for a scanning approach is that the
DMA malware changed the behavior of the scan software, which would deliver
incorrect results. Checking firmware images at load time, as proposed by the
Trusted Computing Group [32], does not prevent runtime attacks. Furthermore,
it is unclear if all ROM components are accessible by the host.

I/OMMU Issues. In the case of DMA attacks an appropriate configuration of
the I/OMMU (see Section 2.3) is proposed as a preventive countermeasure, for
example in [11, p.48]. It is required that system software configures the I/OMMU.
An incorrect configuration cannot be excluded [22, p.2].
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It is assumed that the I/OMMU is secure. Unfortunately this is not always
the case. The authors of [27] demonstrated that an I/OMMU configuration can
be tricked with legacy PCI devices. In [35] is revealed that an I/OMMU can
be attacked by modifying the number of DMA remapping engines provided by
the BIOS (see Section 2.3). This is done before the I/OMMU is configured by
system software. The environment we used for DAGGER is able to carry out
such an attack. This threat can only be mitigated by executing special hardware
dependent code called SINIT. However, on at least one previous occasion the
manufacturer of the chipset failed to release SINIT code at the launch of the
chipset [34, p.22]. This code is needed to initialize a well known and trustwor-
thy environment for, e. g., a hypervisor. It checks the DMA remapping engines
and can therefore prevent an attack as presented in [35]. SINIT belongs to and
increases the size of the trusted computing base. Previous work demonstrated
that SINIT code can have exploitable security vulnerabilities that can be used to
trick I/OMMU mechanisms [35]. Recently, the authors of [33] presented another
attack that can be used to circumvent I/OMMU mechanisms, too. To prevent
the attacks presented in [35, 33], a SINIT as well as a BIOS update must be ap-
plied. Another I/OMMU attack was presented in [34]. Note, SINIT is normally
triggered on hypervisor based platforms. Platforms running a normal OS can-
not necessarily count on the I/OMMU. It should also be mentioned that SINIT
requires to activate additional platform features, namely the Trusted eXecution
Technology and the Trusted Platform Module [14]. That means, users that do not
want to activate the TPM for example cannot count on the I/OMMU either.
Note, the TPM is an opt-in device [14, p.212] and is turned off by default.

For a comprehensive protection against DMA malware it is absolutely nec-
essary to correctly configure the I/OMMU. However, the I/OMMU can only be
considered secure if the above mechanisms to protect the whole platform are
secure. This is a difficult task. Hence, alternative approaches were considered in
[22] and [10]. The authors of [22] state that their approach requires extending
the firmware, does not work correctly if peripherals cause heavy PCIe traffic,
and the verifier component needs to know the exact hardware configuration.
The approach presented in [10] is highly NIC adapter-specific and not applica-
ble to isolated environments such as Intel’s ME. It is worth noting that malware
such as our implementation controls the NIC without any NIC firmware modi-
fications, i. e., exfiltration cannot be detected by the approach described in [10].
Furthermore, this approach has significant performance issues for the host CPU
(100 % utilization of one CPU core).

Memory access policies enforced by I/OMMUs can be insufficient or can even
prevent the use of some other features in some application scenarios. Consider
hardware supported malware scanners such as CoPilot [24] and DeepWatch [5].
The I/OMMU can be configured to stop CoPilot and DeepWatch from working
or to allow such systems to access the host memory to scan it for malicious
software. In the latter case DMA malware could make use of the execution en-
vironment of CoPilot or DeepWatch to attack the host. DAGGER, for example,
uses the DeepWatch environment, i. e., Intel’s ME. Since iAMT version 5, Intel
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supports a verified launch for the firmware to be executed on Intel’s ME [21,
p.271]. The firmware is checked during load time. The result of the load time
check is provided to system software. As far as we know the result is not used
in practice. The mechanism cannot prevent runtime attacks as applied by our
implementation. This means, DAGGER proves that our assumption that an
attacker already infiltrated the target system, e. g., via a zero-day exploit (see
Section 3), can also hold even if such additional security mechanisms are in place.

On the one hand an appropriate configuration of the I/OMMU is a first step
against DMA malware. On the other hand, without resolving the mentioned
issues a successful deployment cannot be guaranteed.

9 Related Work

The discussion of related work is based on the classification system and its
criteria C1 – C4 that we introduced in Section 4.5

Since 2004 several DMA attacks using additional hardware such as USB de-
vices [23], special PCMCIA cards [2], and Firewire devices [8, 9, 3] were presented.
According to C2 those approaches cannot be considered as DMA malware. Ac-
cording to our classification system of Section 4 the attacks presented in [8, 9,
3, 2] are classified in class 11 (1011). The attack presented in [23] is in class 1
(0001) since it reveals itself.

In [28] it was demonstrated that Intel’s ME can be used to write to host
memory. The authors of [28] described a vulnerability that allows to inject code
into the ME environment. The code of [28] did not implement any malware
behavior. It reveals itself by writing to a known hard coded host memory address.
Hence, this approach is in class 5 (0101). Furthermore, it did not demonstrate
how to read from host memory and how to use the OOB network channel.

On the contrary the attacks described in [30, 31, 11], and [7] fulfill all criteria
for DMA malware. More precisely, they are classified in class 15 (1111). The
authors of [30, 31] presented a stealthy secure shell that offers memory inspection
using DMA. A combination of NIC and video card is used to hide the shell. The
shell is installed by reflashing firmware remotely. Our DAGGER prototype does
not require to infilrate code into two peripherals and it does not require to reflash
firmware. The attack presented in [11] exploits a vulnerability in the firmware of a
NIC during runtime. The compromised NIC is used to attack the host system by
adding a backdoor. The authors of [11] described how the host could access the
NIC internal memory. This offers a possibility to detect the DMA malware using
code executed on the host CPU. As far as we know no anti-virus like software
makes use of this. It should be mentioned that the host access to the NIC internal
memory is not a common feature. Normally, the runtime memory of the Intel
ME environment used for our DAGGER implementation is not accessible by the
host. The work of [7] is quite similar to [11]. Both attacks use the same NIC.

5 Note, all classifications were done using publicly available material. If we could not
decide with the help of available resources whether a criterion is fulfilled, we assume
that this criterion is fulfilled.
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The malware described in [7] aims to implement rootkit capabilities. Their work
is still in progress.

10 Conclusion

In this work we studied DMA malware, i.e., malware hidden on dedicated hard-
ware. Such malware can circumvent protection mechanisms run on the host
CPU by directly accessing host memory. We implemented and evaluated DAG-
GER, a DmA based keystroke loGGER. The dedicated hardware enables our
prototype to benefit from rootkit properties. DAGGER operates stealthily. It is
undetectable by anti-virus software etc.

DMA malware is more than controlling a DMA engine. Our evaluation con-
firmed that DMA malware is quite efficient even if obstacles such as memory
address randomization are in place. We also demonstrated that DMA malware
can be quite effective, that is, it can attack several OSes. This verifies that DMA
malware is stealthy at no costs regarding efficiency and effectiveness.

Currently, the host has no reliable means to protect itself. Throughout this
work we highlighted that the I/OMMU has several issues and the host cannot
necessarily count on this preventive countermeasure against DMA malware. Be-
sides possible vulnerabilities and various preconditions that must be fulfilled for
a successful I/OMMU deployment, the most obvious issue is that common OSes
do not or do not sufficiently support the I/OMMU. Hence, currently, DMA mal-
ware can easily attack OSes such as Windows. A general and reliable approach
for scanning the dedicated devices for malware does not exist. Future work is
needed to develop a reliable and more general DMA malware detection mecha-
nism. Until such a solution is developed, only dedicated hardware that is fully
accessible by the host, i. e., complete RAM and ROM access, should be deployed.
This enables the host to check the device for malicious modifications from time
to time. A precondition for this is a reasonable measurement strategy and that
the detector gets loaded first.

We conclude that dedicated hardware with a separate processor, runtime
memory, and a DMA engine are a serious threat for the host platform. DMA
malware executed on such devices is quite effective and efficient. DMA malware
clearly demonstrates that additional protection mechanisms are needed to ensure
a platform’s confidentiality, integrity, and especially its trustworthiness.
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